Indian Statistical Institute, Bangalore B.Math (Hons.) III Year, First Semester Semestral Examination, Back paper Complex Analysis

Time: 3 hours

 $H(\Omega).$

Instructor: B.Bagchi Maximum marks: 100

1. (a) If $\gamma : [0,1] \to \mathbb{C}^*$ is a closed path then show that there is a path $\delta : [0,1] \to \mathbb{C}$ such that $\gamma = \exp \circ \delta$

(b) For any closed path γ in \mathbb{C} and $z \in \mathbb{C} \setminus tr(\gamma)$, define the index of z with respect to γ , and find an integral formula (with proof) for the index.

[15]

- 2. Let Ω be a planar domain and $f: \Omega \to \mathbb{C}$ continuous. If $\int_{\gamma} f = 0$ for all closed paths γ in Ω then show that f is holomorphic on Ω . Give an example to show that the converse statement is false, in general. [10]
- 3. For $z \in \mathbb{C}$, let $G(z) = z e^{\gamma z} \prod_{n=1}^{\infty} (1 + \frac{z}{n}) e^{-\frac{z}{n}}$, where γ is a constant.

(a) Show that the above product converges locally uniformly on \mathbb{C} . Deduce that G is an entire function.

(b) Find all the zeros of G. (Prove that your list of zeros is complete.) (c) Show that there is a choice of the constant γ for which G(1) = 1and $G(z+1) \equiv \frac{1}{z}G(z)$. [20]

4. Let Ω be a simply connected planar domain with $0\varepsilon\Omega$. Let $r_o > 0$ be a constant. Let $\mathcal{F} = \{f\varepsilon H(\Omega) : f(0) = 0 \text{ and } f(z) \neq \pm 1 \text{ for all } z\varepsilon\Omega\},\$ $\mathbb{G} = \{g\varepsilon H(\Omega) : g(0) = \frac{1}{3} \text{ and } g(\Omega) \text{ does not contain any disc of radius} r_0\}.$

Let $T: H(\Omega) \to H(\Omega)$ be defined by $(Tf)(z) = \cos(\pi \cos(\pi f(z))), z \in \Omega, f \in H(\Omega)$. (a) Prove that T is continuous (with respect to the usual topology on

 $H(\Omega)$). (b) Use Block's Theorem to show that \mathbb{G} is a precompact subset of

(c) Show that there is a choice of r_0 for which $T(\mathbb{G}) \supseteq \mathcal{F}$. Deduce that \mathcal{F} is a precompact subset of $H(\Omega)$.

[5+15+20=40]

5. If f is a non-constant holomorphic function on a planar domain Ω , then show that there is a function $k : \Omega \to \{1, 2, 3, \dots\}$ such that for each $z \in \Omega, f$ is exactly k(z)- to - one on some punctured neighbourhood of z. [15]